\begin{tabbing} prod{-}deq($A$;$B$;$a$;$b$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=(\=$\lambda$$A$,$B$,$a$,$b$,$p$,$q$. $q$/$q_{1}$,$q_{2}$.\+\+ \\[0ex]$p$/$p_{1}$,$p_{2}$. \\[0ex]$b$/${\it eq}$,$b_{1}$. \\[0ex]$a$/$e_{1}$,$a_{1}$. \\[0ex]($\lambda$$\%_{1}$.\=$\%_{1}$\+ \\[0ex](\=$\langle$$\lambda$$\%$.\=$\langle$($\lambda$$\%_{1}$.$\%_{1}$($p_{1}$,$q_{1}$)/$\%_{4}$,$\%_{5}$. $\%_{4}$(($\lambda$$\%_{1}$.$\%_{1}$)(($\lambda$$\%_{1}$.$\ast$)($\ast$))))($a_{1}$)\+\+ \\[0ex]$,\,$($\lambda$$\%_{1}$.$\%_{1}$($p_{2}$,$q_{2}$)/$\%_{4}$,$\%_{5}$. $\%_{4}$(($\lambda$$\%_{1}$.$\%_{1}$)(($\lambda$$\%_{1}$.$\ast$)($\ast$))))($b_{1}$)$\rangle$ \-\\[0ex]$,\,$$\lambda$$\%$.$\%$/$\%_{1}$,$\%_{2}$. $\ast$$\rangle$)) \-\-\\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$/$\%_{2}$,$\%_{3}$. $\%_{3}$)\+ \\[0ex](\=($\lambda$$\%_{1}$.\=$\%_{1}$\+\+ \\[0ex]($\langle$$p_{1}$$,\,$$p_{2}$$\rangle$ $=$ $\langle$$q_{1}$$,\,$$q_{2}$$\rangle$ \\[0ex],$\langle$$p_{1}$$,\,$$p_{2}$$\rangle$ $=$ $\langle$$q_{1}$$,\,$$q_{2}$$\rangle$ \\[0ex],$e_{1}$($p_{1}$,$q_{1}$) $\wedge_{2}$ ${\it eq}$($p_{2}$,$q_{2}$) \\[0ex],$e_{1}$($p_{1}$,$q_{1}$) \& ${\it eq}$($p_{2}$,$q_{2}$) \\[0ex],($\lambda$$\%_{1}$.$\%_{1}$)(($\lambda$$\%_{1}$.$\langle$$\lambda$$\%_{2}$.$\%_{2}$$,\,$$\lambda$$\%_{2}$.$\%_{2}$$\rangle$)($\ast$)) \\[0ex],\=($\lambda$$\%_{1}$.$\%_{1}$)\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($e_{1}$($p_{1}$,$q_{1}$),${\it eq}$($p_{2}$,$q_{2}$)))\+ \\[0ex]($\lambda$$p$,$q$. \=Case $q$ of\+ \\[0ex]inl($x$) $\Rightarrow$ \=Case $p$ of\+ \\[0ex]inl($x$) $\Rightarrow$ $\langle$$\lambda$$\%$.$\langle$$\ast$$,\,$$\ast$$\rangle$$,\,$$\lambda$$\%$.$\ast$$\rangle$ \\[0ex]inr($y$) $\Rightarrow$ $\langle$$\lambda$$\%$.$\langle$any($\%$)$,\,$$\ast$$\rangle$$,\,$$\lambda$$\%$.$\%$/$\%_{1}$,$\%_{2}$. any($\%_{1}$)$\rangle$ \-\\[0ex]inr($y$) $\Rightarrow$ \=Case $p$ of\+ \\[0ex]inl($x$) $\Rightarrow$ $\langle$$\lambda$$\%$.$\langle$$\ast$$,\,$any($\%$)$\rangle$$,\,$$\lambda$$\%$.$\%$/$\%_{1}$,$\%_{2}$. any($\%_{2}$)$\rangle$ \\[0ex]inr($y$) $\Rightarrow$ $\langle$$\lambda$$\%$.$\langle$any($\%$)$,\,$any($\%$)$\rangle$$,\,$$\lambda$$\%$.$\%$/$\%_{1}$,$\%_{2}$. any($\%_{2}$)$\rangle$)))) \-\-\-\-\-\\[0ex]($\lambda$$P_{1}$,$P_{2}$,$Q_{1}$,$Q_{2}$,$\%$,$\%_{1}$. \=$\langle$$\lambda$$\%_{2}$.\=$\langle$$\lambda$$\%_{3}$.\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+\+\+ \\[0ex]$\%_{5}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+ \\[0ex]$\%_{5}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$. $\%_{6}$(($\lambda$$\%_{4}$.$\%_{4}$)(($\lambda$$\%_{4}$.$\%_{4}$)($\%_{3}$))))\+ \\[0ex]($\%$)))) \-\-\-\\[0ex]($\%_{2}$)))) \-\-\-\\[0ex]($\%_{1}$) \-\\[0ex]$,\,$$\lambda$$\%_{3}$.\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+ \\[0ex]$\%_{5}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+ \\[0ex]$\%_{6}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$. $\%_{6}$(($\lambda$$\%_{4}$.$\%_{4}$)(($\lambda$$\%_{4}$.$\%_{4}$)($\%_{3}$))))\+ \\[0ex]($\%_{1}$)))) \-\-\-\\[0ex]($\%_{2}$)))) \-\-\-\\[0ex]($\%$)$\rangle$ \-\-\\[0ex]$,\,$$\lambda$$\%_{2}$.\=$\langle$$\lambda$$\%_{3}$.\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+\+ \\[0ex]$\%_{6}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+ \\[0ex]$\%_{5}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$. $\%_{5}$(($\lambda$$\%_{4}$.$\%_{4}$)(($\lambda$$\%_{4}$.$\%_{4}$)($\%_{3}$))))\+ \\[0ex]($\%$)))) \-\-\-\\[0ex]($\%_{2}$)))) \-\-\-\\[0ex]($\%_{1}$) \-\\[0ex]$,\,$$\lambda$$\%_{3}$.\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+ \\[0ex]$\%_{6}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=(\=$\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$.\+\+ \\[0ex]$\%_{6}$ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$)\+ \\[0ex](\=($\lambda$$\%_{4}$.$\%_{4}$/$\%_{5}$,$\%_{6}$. $\%_{5}$(($\lambda$$\%_{4}$.$\%_{4}$)(($\lambda$$\%_{4}$.$\%_{4}$)($\%_{3}$))))\+ \\[0ex]($\%_{1}$)))) \-\-\-\\[0ex]($\%_{2}$)))) \-\-\-\\[0ex]($\%$)$\rangle$$\rangle$)))) \-\-\-\-\-\-\\[0ex]($A$ \\[0ex],$B$ \\[0ex],$a$ \\[0ex],$b$) \- \end{tabbing}